Uniform measures and uniform rectifiability

نویسنده

  • Xavier Tolsa
چکیده

In this paper it is shown that if μ is an n-dimensional Ahlfors-David regular measure in R which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in R. In particular, it is shown here that they satisfy the “big pieces of Lipschitz graphs” property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local uniform rectifiability of uniformly distributed measures

The study of uniformly distributed measures was crucial in Preiss’ proof of his theorem on rectifiability of measures with positive density. It is known that the support of a uniformly distributed measure is an analytic variety. In this paper, we provide quantitative information on the rectifiability of this variety. Tolsa had already shown that n-uniform measures are uniformly rectifiable. Her...

متن کامل

THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY

Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors-David regular set of dimension n. We show that the weak-A∞ property of harmonic measure, for the open set Ω := Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < ∞.

متن کامل

On the Uniform Rectifiability of Ad Regular Measures with Bounded Riesz Transform Operator: the Case of Codimension

We prove that if μ is a d-dimensional Ahlfors-David regular measure in R, then the boundedness of the d-dimensional Riesz transform in L(μ) implies that the non-BAUP David-Semmes cells form a Carleson family. Combined with earlier results of David and Semmes, this yields the uniform rectifiability of μ.

متن کامل

Sparse rectifiability and compactness in SBV

We introduce a notion of sparse rectifiability, stronger than that of uniform rectifiability. As applications we derive, firstly, results ensuring the convergence of the total variation measures |μ| subject to the weak* convergence of the sparsely rectifiable Radon measures μ. Secondly, we apply sparse rectifiability to derive compactness results for special functions of bounded variation (SBV)...

متن کامل

Uniform Rectifiability, Calderón-zygmund Operators with Odd Kernel, and Quasiorthogonality

In this paper we study some questions in connection with uniform rectifiability and the L boundedness of Calderón-Zygmund operators. We show that uniform rectifiability can be characterized in terms of some new adimensional coefficients which are related to the Jones’ β numbers. We also use these new coefficients to prove that n-dimensional CalderónZygmund operators with odd kernel of type C2 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2015